Database Design

- A Database Design Methodology
- Mapping of E-R Schemas into Relations

A DB Design Methodology

- Identify & describe data and user views
- Conceptual modeling
- View integration
- Operation description
- Map to specific DB schema
- Refine the DB schema
- Refine the operation desc.
- Tuning up performance
- User interfaces
- Application programs

Regular Entity Types

- Map each regular entity type E to a relation R
- Include in R
 - All simple attributes of E
 - The simple component (leaf) attributes of all composite attributes
- Use the PK of E as the PK of R

Instructor (Emp#, FName, Minit, LName)
Multivalued Attributes

- Create a new relation M for each multivalued attribute of E
- Include in M the multiple attribute
- Include the PK of R as the FK in M
- The PK of M consists of all attributes of M

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp#, FName, MInit, LName</td>
<td>LName, EMP#</td>
</tr>
</tbody>
</table>

Weak Entity Types

- Create a relation R_w for each weak entity type E_w
- Include in R_w
 - All attributes of E_w
 - All attributes of the identifying relationship
- Include the PK of the owner entity type as the FK in R_w
- Combine the FK and the partial key of E_w if any as the PK of R_w

<table>
<thead>
<tr>
<th>Student</th>
<th>Car</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN, Name, Age, ...</td>
<td>PNum, Color, P_Lot, Date, SSN</td>
</tr>
</tbody>
</table>

Relationships

CASE I: Connectivity - 1:1 Relationship

- Create a relation R for each relationship, if relationship has attributes
- Include the PKs of participating entity types as PK in R
- Create a relation R_n for each Entity
- The FK may be placed in either Entity of the relationship, choose the one that makes the most sense

<table>
<thead>
<tr>
<th>Car</th>
<th>Registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoID, Make, Model, Yr, Color</td>
<td>TagNo, InsID, ExpDate, AutoID</td>
</tr>
</tbody>
</table>
CASE II: Connectivity - 1:M Relationship

- In a one-to-many relationship
 - Choose the many side relation (one of relations), say R1.
 - Include the PK of the one (other) side relation as the FK in R1.
 - If relationship contains attributes, include in R1.

Child (SSN, Name, DOB, MSSN)
Mother (SSN, Name, DOB, Address)

CASE III: Connectivity - M:N Relationship

- In a many-to-many relationship
 - Create Relations for each Entity include PKs
 - Create a Relationship Relation, R
 - The PK of R consists of the PKs of each Entity relation
 - Any attributes of the Relationship Relation remain with it

PILOT (PID, PName, Address, DOB, YrsWCo)
FLIES (PID, A/C#, Hrs_Flown)
AIRCRAFT (A/C#, SeatCapacity)

N-ary Relationships

- Same as for M:N relationships
IS-A Relationships

- Individual relation approach:
 - Map each entity type to a relation
 - For each subtype relation R_{sub}:
 - Include the PK of its supertype relation as the FK in R_{sub}
 - Combine the FK and the PK of R_{sub} if any as the new PK of R_{sub}

 ![Diagram](image)

 - Person
 - Instructor
 - Student
 - Person (SSN, Name, Age, Address, ...)
 - Instructor (SSN, Salary, Office, ...)
 - Student (SSN, Year, GPA, ...)

Other Issues

- Names conflicts can be resolved by renaming the names
- An unary relationship can be mapped as a binary relationship
- Application programs must enforce connectivity and participation constraints

![Diagram](image)